Staff Profile
Dr Jim Stewart
Senior Lecturer
- Telephone: 0191-208-8326
- Personal Website: https://www.ncl.ac.uk/medical-sciences/people/profile/jimstewart.html
- Address: Biosciences Institute
Faculty of Medical Sciences
Newcastle University
The Cookson Building, The Medical School
Framlington Place
Newcastle Upon Tyne
NE2 4HH
BACKGROUND
It has been over 35 years since the first disease alleles on the mitochondrial DNA have been described. In addition, the accumulation of mitochondrial dysfunction with age is one of the nine classic hallmarks of the ageing process. The lab focuses on the following research questions – how do the mitochondria acquire these mutations? How do they clonally expand to lead to mitochondrial deficiency in somatic cells and when transmitted through the female germline? Can we generate animal models to model aspects of human mtDNA disease? What effects do these sporadic deficient cells have on organismal health and ageing?
AFFILIATION
I am a member of the Biosciences Institute and work in the Mitochondrial and Neuromuscular Diseases research theme. I am also affiliated with the Cells, Genes, Molecules Theme.
I am also a member of The Genetics Society.
PREVIOUS POSITIONS
Research Group Leader, Max Planck Institute for Biology of Ageing, Cologne, Germany. (Feb 2014 – Oct 2020).
Senior Postdoctoral Fellow, Max Planck Institute for Biology of Ageing, Cologne, Germany. (Mar 2009 – Jan 2014).
Postdoctoral Fellow Karolinska Institutet, Division of Metabolic Diseases Stockholm, Sweden. (Nov 2005 – Dec 2009).
EDUCATION
PhD. Department of Molecular Biology and Biochemistry, Simon Fraser University, BC, Canada (Jan 2002 – Feb 2006).
MSc. Department of Molecular Biology and Biochemistry, Simon Fraser University, BC, Canada (Sep 1997 – Feb 2002).
BSc (Hons). Biology w/ Chemistry minor. University of Waterloo, ON, CANADA (Sep 1992 – May 1997)
FUNDING
"Purging mutant mitochondrial DNA: from mechanisms to therapies" - UKRI - MRC. (co-I) (2022-2026).
"Towards eradicating mitochondrial DNA deletions: from mechanisms to small molecule therapies" - Champ Foundation. (co-I) (072022-072025).
"MitoCluster: an integrated phenotyping and mouse model generation platform for mitochondrial disease and dysfunction". MRC National Mouse Genetics Network. (04/2022-04/2027).
PAST FUNDING
"Wellcome Centre for Mitochondrial Research". - The Wellcome Trust. (PI within the center) (04/2022-04/2024).
"Enhancing mitochondrial DNA fidelity to improve mammalian lifespan and healthspan" - Human Frontier Science Program (09/2019 - 06/2023).
OTHER LINKS
- ORCID
Animal models of mitochondrial-DNA disease - Mitochondrial diseases encompass a complex genetic landscape, affecting 1:4,300 adults. While >1140 protein gene-products within mitochondria are nuclear-encoded, mutations of the 13 protein, 22 tRNA and 2 rRNAs mitochondrial-DNA genes account for ¾ of all mitochondrial-disease patients. The diseases show a surprisingly diverse array of variable physical manifestation, age of onset and severity in patients, even for mutations within the same gene. In an effort to understand this disease complexity, and aid in pre-clinical research towards treatments for mitochondrial disorders, animal models are highly sought after. Despite advances in nuclear genome-engineering, animal mitochondrial-DNA has remained resistant to transgenic manipulation (Stewart, JIMD, 2020). Our team has previously developed mouse models of mitochondrial-DNA dysfunction via random mutagenesis and screening (Kauppila et al, Cell Reports, 2016, Burr et al. Cell.2023), and are among only three labs in the world who have generated these mitochondrial-DNA mouse models. Work continues on charactering the pathophysiology of these models (Burr et al. Cell.2023), and on pre-clinical experimental therapies for these disorders (Bacman et al. Nature Medicine, 2018, Gammage et al, Nature Medicine 2018, Filograna et al, Scientific Advances, 2019, Zekonyte et al. Nature Communications 2021).
Method to detect and quantify mitochondrial-DNA mutations – The mosaic, cell-to-cell variability of mitochondrial-DNA mutations due to the multi-copy nature of this genome leads to specific challenges in the study of mitochondrial-DNA mutational dysfunction. We work on and refine various sequencing methods to detect, quantify and characterize mitochondrial-DNA mutations (Ross et al, Nature 2013; Kaupilla et al. Cell Reports, 2016; Kauppila et al. NAR, 2018). We also develop methods to detect mitochondrial dysfunction in tissue samples (Simard et al. Journal of Pathology, 2018). We have also studied the roles of suspected Base-Excision DNA repair enzymes within the mitochondria to determine what (if any) role they have on mitochondrial mutagenesis (Kauppila et al, NAR, 2018, Kauppilla & Stewart, BBA-bioenergetics, 2015).
Mitochondria-DNA mutations to reveal functional elements – The inability to manipulate animal mitochondrial-DNA has limited reverse genetics approaches to uncover and study regulatory elements. We have developed methods to study various mitochondrial processes by the study of the behaviour of mutations after random mutagenesis in the mouse (Wanrooij et al. EMBO Reports, 2012) or through the study of mtDNA mutations from cancer genomics databases (Stewart et al. PLoS Genetics, 2015).
Germline transmission and Selection on mitochondrial-DNA mutations – We were among the first to demonstration that deleterious mitochondrial-DNA mutations transmitted through the female germline undergo rapid purifying selection. (Stewart et al. PLoS Biology, 2008; Stewart et al. Nature Reviews Genetics, 2008, Stewart & Larsson, PLoS Genetics, 2014). We have continue to work in this area in an attempt to unravel the various molecular events and selective forces that affect the dynamics of mitochondrial transmission (Kauppila et al. Cell Reports, 2016; Jokinen et al. Human Molecular Genetics, 2016)
Module Lead : MCR 8013 - Designing a Research Proposal (E-learning)
Lectures for MMB8034 - MRes in Mitochondrial Medicine
Project Supervisor - CMB3000 - Research Project
Project Supervisor - MRes and MSci projects
Fellow of the Medical Sciences Graduate School
-
Articles
- Landoni JC, Erkul S, Laalo T, Goffart S, Kivela R, Skube K, Jokitalo E, Nieminen A, Wickstrom S, Stewart J, Suomalainen A. Overactive mitochondrial DNA replication disrupts perinatal cardiac maturation. Nature Communications 2024, 15, 8066.
- Bacman SR, Barrera-Paez JD, Pinto M, Van Booven D, Stewart JB, Griswold AJ, Moraes CT. mitoTALEN Eliminates Mutant mtDNA Genomes in Neurons. Molecular Therapy Nucleic Acids 2024, 35(1), 102132.
- Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochemical Journal 2024, 481(11), 683-715.
- Glynos A, Bozhilova LV, Frison M, Burr S, Stewart JB, Chinnery PF. High-throughput single-cell analysis reveals progressive mitochondrial DNA mosaicism throughout life. Science Advances 2023, 9(43), eadi403.
- Järvinen J, Suomi F, Stewart JB, Guala D, Valori M, Jansson L, Nieminen J, McWilliams TG, Tienari PJ. Cultured lymphocytes’ mitochondrial genome integrity is not altered by cladribine. Clinical and Experimental Immunology 2023, 214(3), 304-303.
- Burr SP, Klimm F, Glynos A, Prater M, Sendon PM, Nash P, Powell CA, Simard M-L, Bonekamp NA, Charl J, Diaz H, Bozhilova LV, Nie Y, Zhang H, Frison M, Falkenberg M, Jones N, Minczuk M, Stewart JB, Chinnery PF. Cell lineage-specific mitochondrial resilience during mammalian organogenesis. Cell 2023, 186(6), 1212-1229.
- Su, T, Gomes, TMB, Smith, ALM, Whitehall, JL, Blain, AP, Simard, ML, Scholten, L, Stewart, JB, Turnbull, DM, Lawless, C, Greaves, LC. Cell division can accelerate the loss of a heteroplasmic mitochondrial DNA mutation in a mouse model of mitochondrial disease. biorXiv 2023. Submitted.
- Saini PK, Dawitz H, Aufschnaiter A, Thomas J, Amblard A, Stewart JB, Thierry-Mieg N, Ott M, Pierrel F. The [PSI+] prion and HSP104 modulate cytochrome c oxidase deficiency caused by deletion of COX12. Molecular Biology of the Cell 2022, 33(14).
- Muthye VR, Mackereth CD, Stewart JB, Lavrov DV. Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Repair 2022, 110, 103273.
- Zhang H, Esposito MG, Pezet M, Aryaman J, Wei W, Klimm F, Calabrese C, Burr SP, Macabelli CH, Viscomi C, Saitou M, Chiaratti M, Stewart JB, Jones N, Chinnery PF. Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission. Science Advances 2021, 7(50), eabi5657.
- Zekonyte U, Bacman S, Smith J, Sharer W, Tomberlin G, Stewart JB, Jantz D, Moraes C. A Mitochondrial Targeted Meganuclease Eliminates Mutant Mitochondrial DNA in a Mouse Model. Nature Communications 2021, 12, 3210.
- Basu S, Xie X, Uhler JP, Hedberg-Oldfors C, Milenkovic D, Baris O, Kimoloi S, Matic S, Stewart JB, Larsson NG, Wiesner RJ, Oldfors A, Gustafsson CM, Falkenberg M, Larsson E. Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. PLoS Genetics 2020, 16(12), e1009242.
- Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Science Advances 2019, 5(4), eaav9824.
- Richter U, Ng KY, Suomi F, Marttinen P, Turunen T, Jackson C, Suomalainen A, Vihinen H, Jokitalo E, Nyman TA, Isokallio MA, Stewart JB, Mancini C, Brusco A, Seneca S, Lombes A, Taylor RW, Battersby BJ. Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Science Alliance 2019, 2(1), e201800219.
- Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nature Medicine 2018, 24(11), 1696-1700.
- Matic S, Jiang M, Nicholls TJ, Uhler JP, Dirksen-Schwanenland C, Polosa PL, Simard ML, Li X, Atanassov I, Rackham O, Filipovska A, Stewart JB, Falkenberg M, Larsson NG, Milenkovic D. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nature Communications 2018, 9(1), 1202.
- Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E, Powell CA, Van Haute L, McCann BJ, Zhang L, Rebar EJ, Zeviani M, Frezza C, Stewart JB, Minczuk M. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine 2018, 24(11), 1691-1695.
- Kauppila JHK, Bonekamp NA, Mourier A, Isokallio MA, Just A, Kauppila TES, Stewart JB, Larsson NG. Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Research 2018, 46(131), 6642-6669.
- Simard M-L, Mourier A, Greaves LC, Taylor RW, Stewart JB. A novel histochemistry assay to assess and quantify focal cytochrome c oxidase deficiency. Journal of Pathology 2018, 245(3), 311-323.
- Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, Bonekamp NA, Albarran-Gutierrez SA, Stewart JB, Larsson NG. Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell Metabolism 2017, 26(2), 429-436.e4.
- Jokinen R, Marttinen P, Stewart JB, Dear NT, Battersby BJ. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division. Human Molecular Genetics 2016, 25(4), 706-714.
- Rackham O, Busch JD, Matic S, Siira SJ, Kuznetsova I, Atanassov I, Ermer JA, Shearwood AMJ, Richman TR, Stewart JB, Mourier A, Milenkovic D, Larsson NG, Filipovska A. Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly. Cell Reports 2016, 16(7), 1874-1890.
- Kauppila JHK, Baines HL, Bratic A, Simard ML, Freyer C, Mourier A, Stamp C, Filograna R, Larsson NG, Greaves LC, Stewart JB. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease. Cell Reports 2016, 16(11), 2980-2990.
- Macao B, Uhler JP, Siibak T, Zhu X, Shi Y, Sheng W, Olsson M, Stewart JB, Gustafsson CM, Falkenberg M. The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nature Communications 2015, 6, 7303.
- Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, Gustafsson CM, Larsson E. Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers. PLoS Genetics 2015, 11(3), e1005333.
- Bratic A, Kauppila TES, Macao B, Grönke S, Siibak T, Stewart JB, Baggio F, Dols J, Partridge L, Falkenberg M, Wredenberg A, Larsson NG. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nature Communications 2015, 6, 8808.
- Baines HL, Stewart JB, Stamp C, Zupanic A, Kirkwood TBL, Larsson NG, Turnbull DM, Greaves LC. Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans. Mechanisms of Ageing and Development 2014, 139, 22-30.
- Hagström E, Freyer C, Battersby BJ, Stewart JB, Larsson NG. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Research 2014, 42(2), 1111-1116.
- Wang W, Scheffler K, Esbensen Y, Strand JM, Stewart JB, Bjørås M, Eide L. Addressing RNA integrity to determine the impact of mitochondrial DNA mutations on brain mitochondrial function with age. PLoS ONE 2014, 9(5), e96940.
- Terzioglu M, Ruzzenente B, Harmel J, Mourier A, Jemt E, López MD, Kukat C, Stewart JB, Wibom R, Meharg C, Habermann B, Falkenberg M, Gustafsson CM, Park CB, Larsson NG. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metabolism 2013, 74(4), 618-626.
- Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 2013, 501(7476), 412-415.
- Deceglie S, Lionetti C, Stewart JB, Habermann B, Roberti M, Cantatore P, Loguercio Polosa P. Characterization of the sea urchin mitochondrial transcription factor A reveals unusual features. Mitochondrion 2013, 14(1), 34-41.
- Freyer C, Cree LM, Mourier A, Stewart JB, Koolmeister C, Milenkovic D, Wai T, Floros VI, Hagstrom E, Chatzidaki EE, Wiesner RJ, Samuels DC, Larsson NG, Chinnery PF. Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nature Genetics 2012, 44(11), 1282-1285.
- Damas J, Carneiro J, Gonçalves J, Stewart JB, Samuels DC, Amorim A, Pereira F. Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Research 2012, 40(16), 7606-7621.
- Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB, Cámara Y, Milenkovic D, Zickerman V, Wibom R, Hultenby K, Erdjument-Bromage H, Tempst P, Brandt U, Stewart JB, Gustafsson CM, Larsson NG. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO Journal 2012, 31(2), 443-456.
- Wanrooij S, Miralles Fusté J, Stewart JB, Wanrooij PH, Samuelsson T, Larsson NG, Gustafsson CM, Falkenberg M. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Reports 2012, 13(12), 1130-1137.
- Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson NG, Gyllensten U. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genetics 2011, 7(3), e1002028.
- Bratic A, Wredenberg A, Grönke S, Stewart JB, Mourier A, Ruzzenente B, Kukat C, Wibom R, Habermann B, Partridge L, Larsson NG. The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genetics 2011, 7(10), e1002324.
- Beckenbach AT, Stewart JB. Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera). Genome 2009, 52(1), 31-38.
- Stewart JB, Beckenbach AT. Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene 2009, 445(1-2), 49-57.
- Stewart J, Freyer C, Elson J, Wredenberg A, Cansu Z, Trifunovic A, Larsson N. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biology 2008, 6(1), e10.
- Zhou X, Solaroli N, Bjerke M, Stewart JB, Rozell B, Johansson M, Karlsson A. Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient mice. Human Molecular Genetics 2008, 17(15), 2329-2335.
- Stewart JB, Beckenback AT. Insect mitochondrial genomics 2: The complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A+T-region elements. Genome 2006, 49(7), 815-824.
- Stewart JB, Beckenbach AT. Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 2005, 48(1), 46-54.
- Stewart JB, Beckenbach AT. Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Molecular Phylogenetics and Evolution 2003, 26(3), 513-26.
-
Book Chapters
- Isokallio MA, Stewart JB. High throughput detection of mtDNA mutations leading to tRNA processing errors. In: Minczuk, M; Rorbach, J, ed. Mitochondrial Gene Expression: Methods and Protocols. New York: Humana, 2021, pp.117-132.
- McCann BJ, Cox A, Gammage PA, Stewart JB, Zernicka-Goetz M, Minczuk M. Delivery of mtZFNs into Early Mouse Embryos. In: Jai, L, ed. Zinc Finfer Proteins: Methods and Protocols. Springer, 2018, pp.215-228.
-
Editorial
- Chinnery PF, Craven L, Mitalipov S, Stewart JB, Herbert M, Turnbull DM. The Challenges of Mitochondrial Replacement. PLoS Genetics 2014, 10(4), e1004315.
-
Reviews
- Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Reviews Genetics 2021, 22(2), 106–118.
- Stewart JB. Current Progress with Mammalian Models of Mitochondrial DNA Disease. Journal of Inherited Metabolic Disease 2021, 44(2), 325-342.
- Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics 2015, 16(9), 530-542.
- Kauppila JHK, Stewart JB. Mitochondrial DNA: Radically free of free-radical driven mutations. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847(11), 1354-1361.
- Stewart JB, Larsson NG. Keeping mtDNA in shape between generations. PLoS Genetics 2014, 10(10), e1004670.
- Stewart JB, Freyer C, Elson JL, Larsson N-G. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nature Reviews Genetics 2008, 9(9), 657-662.
- Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review og Ecology Evolution and Systematics 2006, 37, 545-579.